Skip to main content

Configuring Virtual Networks With Hyper-V

The Virtual Switch

What really sets Hyper-V apart from Microsoft’s other virtualization products is that virtual machines perform much better because they can communicate with the server’s hardware directly rather than having to pass hardware requests through the host operating system (although there are some exceptions to this). Of course you can’t just bombard a network adapter with simultaneous traffic from multiple virtual machines. There has to be a way of managing the traffic. To get around this problem, Microsoft has introduced the concept of the virtual switch.
To understand how this is possible, you have to realize that Hyper-V is not a Windows Server 2008 add-on, but rather is a part of the operating system. When you install the Hyper-V role, the hyper visor is placed “underneath” the Windows 2008 operating system. The existing operating system (known as the host operating system) is placed into something called the parent partition, and each guest operating system is placed into a separate child partition.
To make this type of architecture possible, Microsoft had to unbind the host operating system’s TCP/IP stack from the server’s NIC. In doing so, they have created an additional layer of abstraction known as the virtual switch. The virtual switch is the only networking component that is bound to the physical network adapter. The parent partition and the child partitions use virtual network adapters (known as vNICs), which communicate with the virtual switch using Microsoft’s Virtual Network Switch Protocol.
I realize that this description may be difficult to follow, so I have created the diagram shown in Figure A as a way of helping you to understand the architecture.

Figure A This is what the virtual switch architecture looks like.

Additional Virtual Switches

Hyper-V allows you to create additional virtual switches beyond the one that I just talked about. To do so, open the Hyper-V Manager and then click on the Virtual Network Manager link. Upon doing so, Windows will display the Virtual Network Manager screen,  .

 The Virtual Network Manager allows you to create additional virtual switches.
If you look at the figure above, you can see that the default virtual switch is bound to my physical network adapter. You also have the option of creating a new virtual network, which is the same as creating a new virtual switch. As you can see in the figure, there are three different types of virtual networks that you can create.
Your first option is to create an external virtual network. Doing so creates a virtual switch through which virtual machines can access your entire network, and even the Internet assuming that you have the necessary infrastructure in place.
One thing that you do need to know about external virtual networks is that they must be bound to a physical network adapter. Additionally, each physical network adapter can only be used for a single virtual network. Therefore, if you are creating a secondary external virtual network then you're going to need a secondary NIC that you can bind the new external virtual network to.
Your next option is to create an internal virtual switch. An internal virtual switch is not capable of accessing the yarn that, or even your private network as a whole. It serves primarily as a mechanism for allowing communications between the virtual machines that are hosted on the server. Additionally, an internal virtual network can facilitate communications between the host operating system and the guest operating systems that are running on it.
Your third option is to create a private virtual network. A private virtual network can only be used to facilitate communications between the virtual machines that are hosted on the current server. Private virtual networks can not access the outside world, nor can they access the host operating system.

Conclusion

In this article, I have explained that under normal circumstances the virtual machines that require access your network typically share a single NIC. I then went on to show you how Windows manages the communications for all of your virtual machines, and how you can create an external virtual network that takes advantage of additional NICs installed in your server.

Popular posts from this blog

HOW TO EDIT THE BCD REGISTRY FILE

The BCD registry file controls which operating system installation starts and how long the boot manager waits before starting Windows. Basically, it’s like the Boot.ini file in earlier versions of Windows. If you need to edit it, the easiest way is to use the Startup And Recovery tool from within Vista. Just follow these steps: 1. Click Start. Right-click Computer, and then click Properties. 2. Click Advanced System Settings. 3. On the Advanced tab, under Startup and Recovery, click Settings. 4. Click the Default Operating System list, and edit other startup settings. Then, click OK. Same as Windows XP, right? But you’re probably not here because you couldn’t find that dialog box. You’re probably here because Windows Vista won’t start. In that case, you shouldn’t even worry about editing the BCD. Just run Startup Repair, and let the tool do what it’s supposed to. If you’re an advanced user, like an IT guy, you might want to edit the BCD file yourself. You can do this

DNS Scavenging.

                        DNS Scavenging is a great answer to a problem that has been nagging everyone since RFC 2136 came out way back in 1997.  Despite many clever methods of ensuring that clients and DHCP servers that perform dynamic updates clean up after themselves sometimes DNS can get messy.  Remember that old test server that you built two years ago that caught fire before it could be used?  Probably not.  DNS still remembers it though.  There are two big issues with DNS scavenging that seem to come up a lot: "I'm hitting this 'scavenge now' button like a snare drum and nothing is happening.  Why?" or "I woke up this morning, my DNS zones are nearly empty and Active Directory is sitting in a corner rocking back and forth crying.  What happened?" This post should help us figure out when the first issue will happen and completely avoid the second.  We'll go through how scavenging is setup then I'll give you my best practices.  Scavenging s

AD LDS – Syncronizing AD LDS with Active Directory

First, we will install the AD LDS Instance: 1. Create and AD LDS instance by clicking Start -> Administrative Tools -> Active Directory Lightweight Directory Services Setup Wizard. The Setup Wizard appears. 2. Click Next . The Setup Options dialog box appears. For the sake of this guide, a unique instance will be the primary focus. I will have a separate post regarding AD LDS replication at some point in the near future. 3. Select A unique instance . 4. Click Next and the Instance Name dialog box appears. The instance name will help you identify and differentiate it from other instances that you may have installed on the same end point. The instance name will be listed in the data directory for the instance as well as in the Add or Remove Programs snap-in. 5. Enter a unique instance name, for example IDG. 6. Click Next to display the Ports configuration dialog box. 7. Leave ports at their default values unless you have conflicts with the default values. 8. Click N